最新目录

基于和的车辆行驶平顺性和操纵稳定性分析(2)

来源:力学季刊 【在线投稿】 栏目:期刊导读 时间:2021-06-11
作者:网站采编
关键词:
摘要:图4 二/三自由度横向角速度Fig.4 Bicycle/3 DOF lateral acceleration 图5(a)和图5(b)结果说明,滚动运动在车辆动力学响应中起着关键作用,在仿真中,滚动运动会削

图4 二/三自由度横向角速度Fig.4 Bicycle/3 DOF lateral acceleration

图5(a)和图5(b)结果说明,滚动运动在车辆动力学响应中起着关键作用,在仿真中,滚动运动会削弱车辆的过度转向特性[10]。因此,2自由度模型的过度转向特性要比3自由度模型强得多。

图5 二/三自由度模型下的车辆路径Fig.5 Bicycle/3 DOF vehicle path

图6(a)和图6(b)结果说明,滚动运动在车辆侧滑响应中起着关键作用,在此仿真中,滚动运动会削弱车辆侧滑响应。因此,自行车模型的车辆侧滑响应远强于3自由度模型。

图7(a)和图7(b)结果说明,滚动运动在车辆前胎侧滑响应中起着关键作用,在此仿真中,车辆的滚动运动可以增加车辆前胎侧滑响应。因此,3自由度模型的车辆前胎侧滑移响应远强于2自由度模型。

图8(a)和图8(b)结果说明,滚动运动是车辆后胎侧滑响应的关键作用,在此仿真中,车辆的滚动运动会削弱车辆后胎侧滑响应[11]。因此,二自由度模型后胎侧滑移响应远强于3自由度模型。

图6 二/三自由度模型下的侧滑角Fig.6 Bicycle/3 DOF vehicle side slip angle

图7 二/三自由度模型下的前胎侧滑角Fig.7 Bicycle/3 DOF front tire side slip angle

图8 二/三自由度模型下的前胎侧滑角Fig.8 Bicycle/3 DOF rear tire side slip angle

4 结论

在车辆系统动力学中,滚动阻力运动、横摆运动、横向运动共同决定了车辆运动状态。偏航率、横向速度、侧向加速度、车辆过度转向、车辆侧偏角、前后轮胎侧滑角、横摇角、滚转角速度及Wheels camber-by-roll系数和Wheels steer-by-roll是车辆的运动状态的描述量。

EPS功能开发过程中,充分了解了被控对象的动力学特性,更容易合理地根据整车属性匹配补偿功能,实现理想的驾驶平顺性和操纵稳定性目标。

[1] THOMAS D. of Vehicle Dynamics[M]//Society of automotive Engineers, Warrendale, 1992, 275-307.

[2] LEE J, CHANG S, KIM K, et al. Steering Wheel Torque Control of Steer-by-Wire System for Steering Feel[C]// WCX? 17: SAE World Congress Experience. 2017, doi:10.4271/2017-01-1567.

[3] TIM KAUFMANN, SCOTT MILLSAP, BRIAN MURRAY, et al. Development Experience with Steer-by-Wire[J], SAE Technical Paper, 2001-01-2479.

[4] TONG-JIN PARK, SE-WOOK OH, JAE-HO JANG, et al. The Design of a Controller for the Steer-by-Wire System Using the Hardware-In-the-Loop-Simulation System[J], SAE Technical Paper, 2002-01-1596.

[5] YIXIN YAO. Vehicle Steer-by-Wire System Control[J], SAE Technical Paper, 2006-01-1175.

[6] YANG SHENGBING, DEN CHUNAN, JI XUEWU, et al. Research on Road Feeling Control Strategy of Steer-by-Wire[J], SAE Technical Paper, 2007-01-3652

[7] XIANG W, CHANGFU Z, HAITAO X, et al. Bilateral Control Method of Torque Drive/Angle Feedback Used for Steer-by-Wire System[J]. SAE International Journal of Passenger Cars Electronic & Electrical Systems, 2012, 5(2):479-485, doi:10.4271/2012-01-0792.

[8] TAO, WEINANGAO, BINGZHAOCHU, HONGQINGTIAN,et al. Studies on Steering Feeling Feedback System Based on Nonlinear Vehicle Model[J], SAE Technical Paper, 2017-01-1494, doi:10.4271/2017-01-1494.

[9] ZHENG H, HU J, YANG S. Variable Steering Ratio Design for Vehicle Steer-by-Wire System with Joystick[C]// SAE 2016 World Congress and Exhibition. 2016., doi:10.4271/2016-01-0455.

[10] YUYAO JIANG,WEIWEN DENG,SUMIN ZHANG, et al. Studies on Influencing Factors of Driver SteeringTorque Feedback,SAE Technical Paper, 2015-01-1498, doi:10.4271/2015-01-1498.

[11] HONGYU ZHENG, CHANGFU ZONG, LIJIAO YU. Road Feel Feedback Design for Vehicle Steer-by-Wire via Electric Power Steering,SAE Technical Paper, 2013-01-2898.

[12] FANG, G. CHEN, H. An ADAS-Oriented Virtual EPS Platform Based on the Force Feedback Actuator of the Steer-by-Wire System[J],SAE Technical Paper, 2016-01-1905, doi:10.4271/2016-01-1905.

文章来源:《力学季刊》 网址: http://www.lxjkzz.cn/qikandaodu/2021/0611/586.html



上一篇:虚心力学稳中求深评李军及其书法
下一篇:水泥混凝土路面接缝设计中力学机理分析

力学季刊投稿 | 力学季刊编辑部| 力学季刊版面费 | 力学季刊论文发表 | 力学季刊最新目录
Copyright © 2019 《力学季刊》杂志社 版权所有
投稿电话: 投稿邮箱: